Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Brain Commun ; 6(3): fcae122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38712322

RESUMO

The concept of brain reserve capacity has emerged in stroke recovery research in recent years. Imaging-based biomarkers of brain health have helped to better understand outcome variability in clinical cohorts. Still, outcome inferences are far from being satisfactory, particularly in patients with severe initial deficits. Neurorehabilitation after stroke is a complex process, comprising adaption and learning processes, which, on their part, are critically influenced by motivational and reward-related cognitive processes. Amongst others, dopaminergic neurotransmission is a key contributor to these mechanisms. The question arises, whether the amount of structural reserve capacity in the dopaminergic system might inform about outcome variability after severe stroke. For this purpose, this study analysed imaging and clinical data of 42 severely impaired acute stroke patients. Brain volumetry was performed within the first 2 weeks after the event using the Computational Anatomy Toolbox CAT12, grey matter volume estimates were collected for seven key areas of the human dopaminergic system along the mesocortical, mesolimbic and nigrostriatal pathways. Ordinal logistic regression models related regional volumes to the functional outcome, operationalized by the modified Rankin Scale, obtained 3-6 months after stroke. Models were adjusted for age, lesion volume and initial impairment. The main finding was that larger volumes of the amygdala and the nucleus accumbens at baseline were positively associated with a more favourable outcome. These data suggest a link between the structural state of mesolimbic key areas contributing to motor learning, motivational and reward-related brain networks and potentially the success of neurorehabilitation. They might also provide novel evidence to reconsider dopaminergic interventions particularly in severely impaired stroke patients to enhance recovery after stroke.

2.
Curr Biol ; 33(15): 3145-3154.e5, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37442139

RESUMO

Human skills are composed of sequences of individual actions performed with utmost precision. When occasional errors occur, they may have serious consequences, for example, when pilots are manually landing a plane. In such cases, the ability to predict an error before it occurs would clearly be advantageous. Here, we asked whether it is possible to predict future errors in a keyboard procedural human motor skill. We report that prolonged keypress transition times (KTTs), reflecting slower speed, and anomalous delta-band oscillatory activity in cingulate-entorhinal-precuneus brain regions precede upcoming errors in skill. Combined anomalous low-frequency activity and prolonged KTTs predicted up to 70% of future errors. Decoding strength (posterior probability of error) increased progressively approaching the errors. We conclude that it is possible to predict future individual errors in skill sequential performance.


Assuntos
Encéfalo , Destreza Motora , Humanos , Giro do Cíngulo
3.
Hum Brain Mapp ; 44(16): 5336-5345, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37471691

RESUMO

Brain imaging has significantly contributed to our understanding of the cerebellum being involved in recovery after non-cerebellar stroke. Due to its connections with supratentorial brain networks, acute stroke can alter the function and structure of the contralesional cerebellum, known as crossed cerebellar diaschisis (CCD). Data on the spatially precise distribution of structural CCD and their implications for persistent deficits after stroke are notably limited. In this cross-sectional study, structural MRI and clinical data were analyzed from 32 chronic stroke patients, at least 6 months after the event. We quantified lobule-specific contralesional atrophy, as a surrogate of structural CCD, in patients and healthy controls. Volumetric data were integrated with clinical scores of disability and motor deficits. Diaschisis-outcome models were adjusted for the covariables age, lesion volume, and damage to the corticospinal tract. We found that structural CCD was evident for the whole cerebellum, and particularly for lobules V and VI. Lobule VI diaschisis was significantly correlated with clinical scores, that is, volume reductions in contralesional lobule VI were associated with higher levels of disability and motor deficits. Lobule V and the whole cerebellum did not show similar diaschisis-outcome relationships across the spectrum of the clinical scores. These results provide novel insights into stroke-related cerebellar plasticity and might thereby promote lobule VI as a key area prone to structural CCD and potentially involved in recovery and residual motor functioning.


Assuntos
Diásquise , Acidente Vascular Cerebral , Humanos , Estudos Transversais , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Imageamento por Ressonância Magnética/métodos , Dano Encefálico Crônico/patologia , Circulação Cerebrovascular
4.
Brain Commun ; 5(3): fcad160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265601

RESUMO

Cortical thickness analyses have provided valuable insights into changes in cortical brain structure after stroke and their association with recovery. Across studies though, relationships between cortical structure and function show inconsistent results. Recent developments in diffusion-weighted imaging of the cortex have paved the way to uncover hidden aspects of stroke-related alterations in cortical microstructure, going beyond cortical thickness as a surrogate for cortical macrostructure. We re-analysed clinical and imaging data of 42 well-recovered chronic stroke patients from 2 independent cohorts (mean age 64 years, 4 left-handed, 71% male, 16 right-sided strokes) and 33 healthy controls of similar age and gender. Cortical fractional anisotropy and cortical thickness values were obtained for six key sensorimotor areas of the contralesional hemisphere. The regions included the primary motor cortex, dorsal and ventral premotor cortex, supplementary and pre-supplementary motor areas, and primary somatosensory cortex. Linear models were estimated for group comparisons between patients and controls and for correlations between cortical fractional anisotropy and cortical thickness and clinical scores. Compared with controls, stroke patients exhibited a reduction in fractional anisotropy in the contralesional ventral premotor cortex (P = 0.005). Fractional anisotropy of the other regions and cortical thickness did not show a comparable group difference. Higher fractional anisotropy of the ventral premotor cortex, but not cortical thickness, was positively associated with residual grip force in the stroke patients. These data provide novel evidence that the contralesional ventral premotor cortex might constitute a key sensorimotor area particularly susceptible to stroke-related alterations in cortical microstructure as measured by diffusion MRI and they suggest a link between these changes and residual motor output after stroke.

5.
Sci Rep ; 13(1): 2930, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36808164

RESUMO

Abundant evidence shows that consolidated memories are susceptible to modifications following their reactivation. Processes of memory consolidation and reactivation-induced skill modulation have been commonly documented after hours or days. Motivated by studies showing rapid consolidation in early stages of motor skill acquisition, here we asked whether motor skill memories are susceptible to modifications following brief reactivations, even at initial stages of learning. In a set of experiments, we collected crowdsourced online motor sequence data to test whether post-encoding interference and performance enhancement occur following brief reactivations in early stages of learning. Results indicate that memories forming during early learning are not susceptible to interference nor to enhancement within a rapid reactivation-induced time window, relative to control conditions. This set of evidence suggests that reactivation-induced motor skill memory modulation might be dependent on consolidation at the macro-timescale level, requiring hours or days to occur.


Assuntos
Consolidação da Memória , Destreza Motora , Destreza Motora/fisiologia , Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Desempenho Psicomotor/fisiologia
6.
Brain Commun ; 4(6): fcac203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337341

RESUMO

The concept of brain reserve capacity positively influencing the process of recovery after stroke has been continuously developed in recent years. Global measures of brain health have been linked with a favourable outcome. Numerous studies have evidenced that the cerebellum is involved in recovery after stroke. However, it remains an open question whether characteristics of cerebellar anatomy, quantified directly after stroke, might have an impact on subsequent outcome after stroke. Thirty-nine first-ever ischaemic non-cerebellar stroke patients underwent MRI brain imaging early after stroke and longitudinal clinical follow-up. Structural images were used for volumetric analyses of distinct cerebellar regions. Ordinal logistic regression analyses were conducted to associate cerebellar volumes with functional outcome 3-6 months after stroke, operationalized by the modified Rankin Scale. Larger volumes of cerebellar lobules IV, VI, and VIIIB were positively correlated with favourable outcome, independent of the severity of initial impairment, age, and lesion volume (P < 0.01). The total cerebellar volume did not exhibit a significant structure-outcome association. The present study reveals that pre-stroke anatomy of distinct cerebellar lobules involved in motor and cognitive functioning might be linked to outcome after acute non-cerebellar stroke, thereby promoting the emerging concepts of structural brain reserve for recovery processes after stroke.

7.
Brain Commun ; 4(2): fcac049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35274100

RESUMO

Analyses of alterations of brain networks have gained an increasing interest in stroke rehabilitation research. Compared with functional networks derived from resting-state analyses, there is limited knowledge of how structural network topology might undergo changes after stroke and, more importantly, if structural network information obtained early after stroke could enhance recovery models to infer later outcomes. The present work re-analysed cross-sectional structural imaging data, obtained within the first 2 weeks, of 45 acute stroke patients (22 females, 24 right-sided strokes, age 68 ± 13 years). Whole-brain tractography was performed to reconstruct structural connectomes and graph-theoretical analyses were employed to quantify global network organization with a focus on parameters of network integration and modular processing. Graph measures were compared between stroke patients and 34 healthy controls (15 females, aged 69 ± 10 years) and they were integrated with four clinical scores of the late subacute stage, covering neurological symptom burden (National Institutes of Health Stroke Scale), global disability (modified Rankin Scale), activity-related disability (Barthel Index) and motor functions (Upper-Extremity Score of the Fugl-Meyer Assessment). The analyses were employed across the complete cohort and, based on clustering analysis, separately within subgroups stratified in mild to moderate (n = 21) and severe (n = 24) initial deficits. The main findings were (i) a significant reduction of network's global efficiency, specifically in patients with severe deficits compared with controls (P = 0.010) and (ii) a significant negative correlation of network efficiency with the extent of persistent functional deficits at follow-up after 3-6 months (P ≤ 0.032). Specifically, regression models revealed that this measure was capable to increase the explained variance in future deficits by 18% for the modified Rankin Scale, up to 24% for National Institutes of Health Stroke Scale, and 16% for Barthel Index when compared with models including the initial deficits and the lesion volume. Patients with mild to moderate deficits did not exhibit a similar impact of network efficiency on outcome inference. Clustering coefficient and modularity, measures of segregation and modular processing, did not exhibit comparable structure-outcome relationships, neither in severely nor in mildly affected patients. This study provides empirical evidence that structural network efficiency as a graph-theoretical marker of large-scale network topology, quantified early after stroke, relates to recovery. Notably, this contribution was only evident in severely but not mildly affected stroke patients. This suggests that the initial clinical deficit might shape the dependency of recovery on global network topology after stroke.

8.
Cereb Cortex ; 32(24): 5622-5627, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-35169830

RESUMO

Imaging studies have evidenced that contralesional cortices are involved in recovery after motor stroke. Cortical thickness (CT) analysis has proven its potential to capture the changes of cortical anatomy, which have been related to recovery and treatment gains under therapy. An open question is whether CT obtained in the acute phase after stroke might inform correlational models to explain outcome variability. Data of 38 severely impaired (median NIH Stroke Scale 9, interquartile range: 6-13) acute stroke patients of 2 independent cohorts were reanalyzed. Structural imaging data were processed via the FreeSurfer pipeline to quantify regional CT of the contralesional hemisphere. Ordinal logistic regression models were fit to relate CT to modified Rankin Scale as an established measure of global disability after 3-6 months, adjusted for the initial deficit, lesion volume, and age. The data show that CT of contralesional cortices, such as the precentral gyrus, the superior frontal sulcus, and temporal and cingulate cortices, positively relates to the outcome after stroke. This work shows that the baseline cortical anatomy of selected contralesional cortices can explain the outcome variability after severe stroke, which further contributes to the concept of structural brain reserve with respect to contralesional cortices to promote recovery.


Assuntos
Córtex Motor , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/patologia , Córtex Motor/patologia , Tronco
9.
Stroke ; 52(12): 3839-3847, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34412514

RESUMO

BACKGROUND AND PURPOSE: Cortical beta oscillations are reported to serve as robust measures of the integrity of the human motor system. Their alterations after stroke, such as reduced movement-related beta desynchronization in the primary motor cortex, have been repeatedly related to the level of impairment. However, there is only little data whether such measures of brain function might directly relate to structural brain changes after stroke. METHODS: This multimodal study investigated 18 well-recovered patients with stroke (mean age 65 years, 12 males) by means of task-related EEG and diffusion-weighted structural MRI 3 months after stroke. Beta power at rest and movement-related beta desynchronization was assessed in 3 key motor areas of the ipsilesional hemisphere that are the primary motor cortex (M1), the ventral premotor area and the supplementary motor area. Template trajectories of corticospinal tracts (CST) originating from M1, premotor cortex, and supplementary motor area were used to quantify the microstructural state of CST subcomponents. Linear mixed-effects analyses were used to relate tract-related mean fractional anisotropy to EEG measures. RESULTS: In the present cohort, we detected statistically significant reductions in ipsilesional CST fractional anisotropy but no alterations in EEG measures when compared with healthy controls. However, in patients with stroke, there was a significant association between both beta power at rest (P=0.002) and movement-related beta desynchronization (P=0.003) in M1 and fractional anisotropy of the CST specifically originating from M1. Similar structure-function relationships were neither evident for ventral premotor area and supplementary motor area, particularly with respect to their CST subcomponents originating from premotor cortex and supplementary motor area, in patients with stroke nor in controls. CONCLUSIONS: These data suggest there might be a link connecting microstructure of the CST originating from M1 pyramidal neurons and beta oscillatory activity, measures which have already been related to motor impairment in patients with stroke by previous reports.


Assuntos
Ritmo beta/fisiologia , Córtex Motor/fisiopatologia , Tratos Piramidais/patologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos
10.
Cell Rep ; 35(10): 109193, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107255

RESUMO

The introduction of rest intervals interspersed with practice strengthens wakeful consolidation of skill. The mechanisms by which the brain binds discrete action representations into consolidated, highly temporally resolved skill sequences during waking rest are not known. To address this question, we recorded magnetoencephalography (MEG) during acquisition and rapid consolidation of a sequential motor skill. We report the presence of prominent, fast waking neural replay during the same rest periods in which rapid consolidation occurs. The observed replay is temporally compressed by approximately 20-fold relative to the acquired skill, is selective for the trained sequence, and predicts the magnitude of skill consolidation. Replay representations extend beyond the hippocampus and entorhinal cortex to the contralateral sensorimotor cortex. These results document the presence of robust hippocampo-neocortical replay supporting rapid wakeful consolidation of skill.


Assuntos
Hipocampo/fisiologia , Destreza Motora/fisiologia , Neocórtex/fisiologia , Humanos
11.
Brain Commun ; 2(1): fcaa001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954275

RESUMO

The time course of topological reorganization that occurs in the structural connectome after an ischaemic stroke is currently not well understood. We aimed to determine the evolution of structural brain networks in stroke patients with motor deficits and relate changes in their global topology to residual symptom burden and functional impairment. In this prospective cohort study, ischaemic stroke patients with supratentorial infarcts and motor symptoms were assessed longitudinally by advanced diffusion MRI and detailed clinical testing of upper extremity motor function at four time points from the acute to the chronic stage. For each time point, structural connectomes were reconstructed, and whole-hemisphere global network topology was quantified in terms of integration and segregation parameters. Using non-linear joint mixed-effects regression modelling, network evolution was related to lesion volume and clinical outcome. Thirty patients were included for analysis. Graph-theoretical analysis demonstrated that, over time, brain networks became less integrated and more segregated with decreasing global efficiency and increasing modularity. Changes occurred in both stroke and intact hemispheres and, in the latter, were positively associated with lesion volume. Greater change in topology was associated with larger residual symptom burden and greater motor impairment 1, 3 and 12 months after stroke. After ischaemic stroke, brain networks underwent characteristic changes in both ipsi- and contralesional hemispheres. Topological network changes reflect the severity of damage to the structural network and are associated with functional outcome beyond the impact of lesion volume.

12.
NPJ Sci Learn ; 5: 7, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550003

RESUMO

Performance improvements during early human motor skill learning are suggested to be driven by short periods of rest during practice, at the scale of seconds. To reveal the unknown mechanisms behind these "micro-offline" gains, we leveraged the sampling power offered by online crowdsourcing (cumulative N over all experiments = 951). First, we replicated the original in-lab findings, demonstrating generalizability to subjects learning the task in their daily living environment (N = 389). Second, we show that offline improvements during rest are equivalent when significantly shortening practice period duration, thus confirming that they are not a result of recovery from performance fatigue (N = 118). Third, retroactive interference immediately after each practice period reduced the learning rate relative to interference after passage of time (N = 373), indicating stabilization of the motor memory at a microscale of several seconds. Finally, we show that random termination of practice periods did not impact offline gains, ruling out a contribution of predictive motor slowing (N = 71). Altogether, these results demonstrate that micro-offline gains indicate rapid, within-seconds consolidation accounting for early skill learning.

13.
Neuroimage ; 208: 116463, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31862526

RESUMO

The human brain coordinates a wide variety of motor activities. On a large scale, the cortical motor system is topographically organized such that neighboring body parts are represented by neighboring brain areas. This homunculus-like somatotopic organization along the central sulcus has been observed using neuroimaging for large body parts such as the face, hands and feet. However, on a finer scale, invasive electrical stimulation studies show deviations from this somatotopic organization that suggest an organizing principle based on motor actions rather than body part moved. It has not been clear how the action-map organization principle of the motor cortex in the mesoscopic (sub-millimeter) regime integrates into a body map organization principle on a macroscopic scale (cm). Here we developed and applied advanced mesoscopic (sub-millimeter) fMRI and analysis methodology to non-invasively investigate the functional organization topography across columnar and laminar structures in humans. Compared to previous methods, in this study, we could capture locally specific blood volume changes across entire brain regions along the cortical curvature. We find that individual fingers have multiple mirrored representations in the primary motor cortex depending on the movements they are involved in. We find that individual digits have cortical representations up to 3 â€‹mm apart from each other arranged in a column-like fashion. These representations are differentially engaged depending on whether the digits' muscles are used for different motor actions such as flexion movements, like grasping a ball or retraction movements like releasing a ball. This research provides a starting point for non-invasive investigation of mesoscale topography across layers and columns of the human cortex and bridges the gap between invasive electrophysiological investigations and large coverage non-invasive neuroimaging.


Assuntos
Mapeamento Encefálico , Dedos/fisiologia , Imageamento por Ressonância Magnética , Atividade Motora/fisiologia , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Adulto , Humanos , Córtex Motor/diagnóstico por imagem
14.
Sci Rep ; 9(1): 18305, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797890

RESUMO

The beta rhythm (15-30 Hz) is a prominent signal of sensorimotor cortical activity. This rhythm is not sustained but occurs non-rhythmically as brief events of a few (1-2) oscillatory cycles. Recent work on the relationship between these events and sensorimotor performance suggests that they are the biologically relevant elements of the beta rhythm. However, the influence of these events on corticospinal excitability, a mechanism through which the primary motor cortex controls motor output, is unknown. Here, we addressed this question by evaluating relationships between beta event characteristics and corticospinal excitability in healthy adults. Results show that the number, amplitude, and timing of beta events preceding transcranial magnetic stimulation (TMS) each significantly predicted motor-evoked potential (MEP) amplitudes. However, beta event characteristics did not explain additional MEP amplitude variance beyond that explained by mean beta power alone, suggesting that conventional beta power measures and beta event characteristics similarly captured natural variation in human corticospinal excitability. Despite this lack of additional explained variance, these results provide first evidence that endogenous beta oscillatory events shape human corticospinal excitability.


Assuntos
Ritmo beta , Potencial Evocado Motor , Córtex Sensório-Motor/fisiologia , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino
15.
Ann Neurol ; 86(6): 853-865, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31604371

RESUMO

OBJECTIVE: The majority of patients with stroke survive the acute episode and live with enduring disability. Effective therapies to support recovery of motor function after stroke are yet to be developed. Key to this development is the identification of neurophysiologic signals that mark recovery and are suitable and susceptible to interventional therapies. Movement preparatory low-frequency oscillations (LFOs) play a key role in cortical control of movement. Recent animal data point to a mechanistic role of motor cortical LFOs in stroke motor deficits and demonstrate neuromodulation intervention with therapeutic benefit. Their relevance in human stroke pathophysiology is unknown. METHODS: We studied the relationship between movement-preparatory LFOs during the performance of a visuomotor grip task and motor function in a longitudinal (<5 days, 1 and 3 months) cohort study of 33 patients with motor stroke and in 19 healthy volunteers. RESULTS: Acute stroke-lesioned brains fail to generate the LFO signal. Whereas in healthy humans, a transient occurrence of LFOs preceded movement onset at predominantly contralateral frontoparietal motor regions, recordings in patients revealed that movement-preparatory LFOs were substantially diminished to a level of 38% after acute stroke. LFOs progressively increased at 1 and 3 months. This re-emergence closely tracked the recovery of motor function across several movement qualities including grip strength, fine motor skills, and synergies and was frequency band specific. INTERPRETATION: Our results provide the first human evidence for a link between movement-preparatory LFOs and functional recovery after stroke, promoting their relevance for movement control. These results suggest that it may be interesting to explore targeted, LFOs-restorative brain stimulation therapy in human stroke patients. ANN NEUROL 2019;86:853-865.


Assuntos
Ondas Encefálicas/fisiologia , Força da Mão/fisiologia , Córtex Motor/fisiopatologia , Desempenho Psicomotor/fisiologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Estudos de Coortes , Eletroencefalografia/tendências , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Movimento/fisiologia , Acidente Vascular Cerebral/diagnóstico por imagem
16.
Curr Biol ; 29(8): 1346-1351.e4, 2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-30930043

RESUMO

The brain strengthens memories through consolidation, defined as resistance to interference (stabilization) or performance improvements between the end of a practice session and the beginning of the next (offline gains) [1]. Typically, consolidation has been measured hours or days after the completion of training [2], but the same concept may apply to periods of rest that occur interspersed in a series of practice bouts within the same session. Here, we took an unprecedented close look at the within-seconds time course of early human procedural learning over alternating short periods of practice and rest that constitute a typical online training session. We found that performance did not markedly change over short periods of practice. On the other hand, performance improvements in between practice periods, when subjects were at rest, were significant and accounted for early procedural learning. These offline improvements were more prominent in early training trials when the learning curve was steep and no performance decrements during preceding practice periods were present. At the neural level, simultaneous magnetoencephalographic recordings showed an anatomically defined signature of this phenomenon. Beta-band brain oscillatory activity in a predominantly contralateral frontoparietal network predicted rest-period performance improvements. Consistent with its role in sensorimotor engagement [3], modulation of beta activity may reflect replay of task processes during rest periods. We report a rapid form of offline consolidation that substantially contributes to early skill learning and may extend the concept of consolidation to a time scale in the order of seconds, rather than the hours or days traditionally accepted.


Assuntos
Aprendizagem , Consolidação da Memória , Destreza Motora , Desempenho Psicomotor , Adulto , Feminino , Humanos , Masculino
17.
Hum Brain Mapp ; 40(10): 3091-3101, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30927325

RESUMO

Hand motor function is often severely affected in stroke patients. Non-satisfying recovery limits reintegration into normal daily life. Understanding stroke-related network changes and identifying common principles that might underlie recovered motor function is a prerequisite for the development of interventional therapies to support recovery. Here, we combine the evaluation of functional activity (multichannel electroencephalography) and structural integrity (diffusion tensor imaging) in order to explain the degree of residual motor function in chronic stroke patients. By recording neural activity during a reaching and grasping task that mimics activities of daily living, the study focuses on deficit-related neural activation patterns. The study showed that the functional role of movement-related beta desynchronization in the supplementary motor area (SMA) for residual hand motor function in stroke patients depends on the microstructural integrity of the corticospinal tract (CST). In particular, in patients with damaged CST, stronger task-related activity in the SMA was associated with worse residual motor function. Neither CST damage nor functional brain activity alone sufficiently explained residual hand motor function. The findings suggest a central role of the SMA in the motor network during reaching and grasping in stroke patients, the degree of functional relevance of the SMA is depending on CST integrity.


Assuntos
Córtex Motor/fisiopatologia , Desempenho Psicomotor/fisiologia , Tratos Piramidais/patologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Ritmo beta , Feminino , Força da Mão , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Motores/etiologia , Transtornos Motores/patologia , Transtornos Motores/fisiopatologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia
18.
Front Neurol ; 10: 105, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837935

RESUMO

Structural brain imaging has continuously furthered our knowledge how different pathways of the human motor system contribute to residual motor output in stroke patients. Tract-related microstructure of pathways between primary and premotor areas has been found to critically influence motor output. The motor network is not restricted in connectivity to motor and premotor areas but these brain regions are densely interconnected with prefrontal regions such as the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex. So far, the available data about the topography of such direct pathways and their microstructural properties in humans are sparse. To what extent prefrontal-premotor connections might also relate to residual motor outcome after stroke is still an open question. The present study was designed to address this issue of structural connectivity of prefrontal-premotor pathways in 26 healthy, older participants (66 ± 10 years old, 15 male) and 30 well-recovered chronic stroke patients (64 ± 10 years old, 21 males). Probabilistic tractography was used to reconstruct direct fiber tracts between DLPFC and VLPFC and three premotor areas (dorsal and ventral premotor cortex and the supplementary motor area). Direct connections between DLPFC/VLPFC and the primary motor cortex were also tested. Tract-related microstructure was estimated for each specific tract by means of fractional anisotropy and alternative diffusion metrics. These measures were compared between the groups and related to residual motor outcome in the stroke patients. Direct prefrontal-premotor trajectories were successfully traceable in both groups. Similar in gross anatomic topography, stroke patients presented only marginal microstructural alterations of these tracts, predominantly of the affected hemisphere. However, there was no clear evidence for a significant association between tract-related microstructure of prefrontal-premotor connections and residual motor functions in the present group of well-recovered stroke patients. Direct prefrontal-motor connections between DLPFC/VLPFC and the primary motor cortex could not be reconstructed in the present healthy participants and stroke patients.

19.
Cereb Cortex ; 29(9): 3766-3777, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30496352

RESUMO

Oscillatory activity within sensorimotor networks is characterized by time-varying changes in phase and power. The influence of interactions between sensorimotor oscillatory phase and power on human motor function, like corticospinal output, is unknown. We addressed this gap in knowledge by delivering transcranial magnetic stimulation (TMS) to the human motor cortex during electroencephalography recordings in 20 healthy participants. Motor evoked potentials, a measure of corticospinal excitability, were categorized offline based on the mu (8-12 Hz) and beta (13-30 Hz) oscillatory phase and power at the time of TMS. Phase-dependency of corticospinal excitability was evaluated across a continuous range of power levels using trial-by-trial linear mixed-effects models. For mu, there was no effect of PHASE or POWER (P > 0.51), but a significant PHASE × POWER interaction (P = 0.002). The direction of phase-dependency reversed with changing mu power levels: corticospinal output was higher during mu troughs versus peaks when mu power was high while the opposite was true when mu power was low. A similar PHASE × POWER interaction was not present for beta oscillations (P > 0.11). We conclude that the interaction between sensorimotor oscillatory phase and power gates human corticospinal output to an extent unexplained by sensorimotor oscillatory phase or power alone.


Assuntos
Ondas Encefálicas , Tratos Piramidais/fisiologia , Córtex Sensório-Motor/fisiologia , Adulto , Potencial Evocado Motor , Feminino , Humanos , Masculino , Córtex Motor/fisiologia , Processamento de Sinais Assistido por Computador , Estimulação Magnética Transcraniana
20.
Stroke ; 49(12): 2928-2932, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30571408

RESUMO

Background and Purpose- Tractography by diffusion tensor imaging has extended our knowledge on the contribution of damage to different pathways to residual motor function after stroke. Integrity of the corticospinal tract (CST), for example, has been identified to characterize and predict its course. Yet there is only scarce data that allow a judgment on the impact of extrapyramidal pathways between the basal ganglia on motor function poststroke. We aimed at studying their association with performance in fine motor skills after stroke. Methods- We performed probabilistic tractography and reconstructed nigro-pallidal tracts connecting substantia nigra and globus pallidus, as well as the CST in 26 healthy subjects. Resulting tracts were registered to the individual images of 20 patients 3 months after stroke, and their microstructural integrity was measured by fractional anisotropy. Clinical examination of the patients' gross (grip force) and fine (nine-hole peg test) motor skills was performed 1 year after stroke. For assessment of factors influencing nine-hole peg test, we used a multivariate model. Results- Nigro-pallidal tracts were traceable in all participants, had no overlap to the CST and passed the nucleus subthalamicus. In stroke patients, nigro-pallidal tracts ipsilateral to the stroke lesion showed a significantly reduced fractional anisotropy (ratio, 0.96±0.02; P=0.021). One year after stroke, nine-hole peg test values were significantly slower for the affected hand, while grip force was comparable between both hands. Reduced integrity of the nigro-pallidal tracts was associated with worse performance in the nine-hole peg test ( P=0.040), as was reduced integrity of the CST ( P<0.001) and younger age ( P<0.001). Conclusions- Nigro-pallidal tracts with containing connections of the nucleus subthalamicus represent a relevant part of the extrapyramidal system and specifically contribute to residual fine motor skills after stroke beyond the well-known contribution of the CST. They may deliver supportive information for prediction of motor recovery after stroke.


Assuntos
Tratos Extrapiramidais/diagnóstico por imagem , Destreza Motora/fisiologia , Tratos Piramidais/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Imagem de Tensor de Difusão , Feminino , Globo Pálido/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Vias Neurais/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Substância Negra/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...